

PHG105

P05-P10

First choice for continuous cut with hardness higher than 38HRC

New CVD coating with Al₂O₃+TiN combined with a very hard substrate.

PHG115

P10-P25

Suitable for high to medium cutting speeds on steels

> New CVD coating with Al₂O₃+TiN.

PHG125

P20-P35

Ideal for general application in all kind of steels

Carbide grade suitable for medium machining of steels at medium cutting speeds.

First choice for roughing to heavy roughing operations with interrupted cut at medium to low cutting speeds

Binary substrate grade (Wc - Co) with medium grain size combined with a medium temperature CVD coating.

PHG128

P40-P50

A very high toughness

grade ideal for heavy

roughing applications

while using on large I.C

inserts

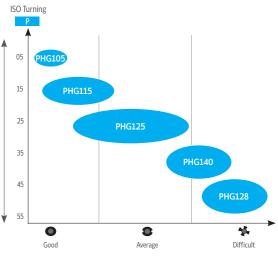
Top coating (TiN)

A yellow TiN-coating on insert allows easier wear detection.

CVD - Alumina Coating (AI₂O₃)

High-strength alumina coating. The top surface is smooth and does not stick to the chip.

Inner coating Ti(C,N)


Fine grain TiCN (titantium carbide) coating with columnar structure which is hard and wear resistant against abrasive wear.

SUBSTRATE

Cemented-carbide substrate

that combines high strength with reliable toughness.

05 15 PHG115 25 PHG125 35 PHG140 45 -Vc ↓ 0 8 4

Machining conditions

New CVD coating with Al₂O₃+TiN.

Suitable for high to medium cutting speeds in stainless steel. Ideal for turning on good condition of cut (continuous cut)

First choice for general application on turning of stainless steels

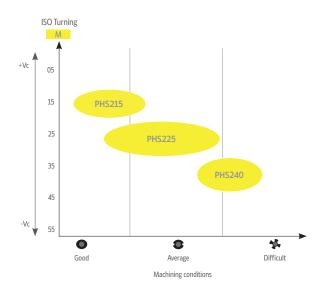
Carbide grade suitable for medium machining of stainless steels and super alloys at medium cutting speeds.

First choice for roughing to heavy roughing operations with interrupted cut at medium to low cutting speeds on stainless steel.

Top coating (TiC)

A grey TiC-coating on insert allows easier wear detection.

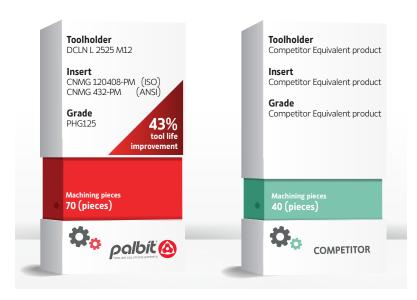
CVD - Alumina Coating (AI₂O₃)

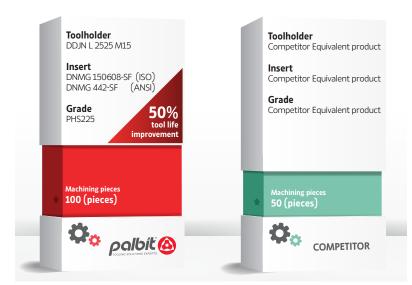

High-strength alumina coating. The top surface is smooth and does not stick to the chip.

Inner coating Ti(C,N)

Fine grain TiCN (titantium carbide) coating with columnar structure which is hard and wear resistant against abrasive wear.

SUBSTRATE


Cemented-carbide substrate that combines high strength with reliable toughness.



3

Workpiece material: Low-alloy Steel, Ck45 (200 Hb)		
Cutting speed: Vc	200 m/min	656 sfm
Feed per tooth: fn	0,30 mm/r	0.012 in/r
Depth of cut: ap	3,00 mm	0.118 in
Operation	External turning	
Coolant	Emulsion	

Workpiece material: stainless steel, AISI 316			
Cutting speed: Vc	180 m/min	590 sfm	
Feed per tooth: fn	0,30 mm/r	0.012 in/r	
Depth of cut: ap	2,00 mm	0.078 in	
Operation	External turning	External turning	
Coolant	Emulsion	Emulsion	

 Ξ